NPS ARCHIVE

1967
KERR, W.
William A Kerr

AN INVESTIGATION OF A PORTABLE DEVICE
FOR DETERMINING
LATERAL LOADS ON A HOLLOW CYLINDER.


```
                                W0!aS CMF F
                            y
```



```
        (J95%)
```



```
        8nc
```



```
        IN NAVII ARCET:ZCTURE:
        Emu
        MARJNE EMGTGETO?:
        &も tra*
```



```
        Myy : 106?
```

ARS ARCRHE

$$
\begin{aligned}
& 19 \varepsilon 7 \\
& k \in \pi R, ~ w . ~
\end{aligned}
$$

LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIF. 93940

Submitted to the Denartumb of laval Arcoitccuune afl

The ouiant of the researcl : an to investictate the

The metrod of investicảijor wos matytion? ans conm
 the thaory of elastiotty io daberwirs mosomonge cuantitiea

 a pombuble Somegnmeauming dexice that derarde on rezyine elastic curre to trodtico a messureb? etzain vas imurocbicat when the strain meacurement wes performed with an efentóca? rosistencs stmain goge.

It is recormented that further investieqtion he conm ducted in the area of other chances in the geometry of the hollow-eylimuer, a means of magnifying the changes in geometry and a meana of remotely detecting very small disolacerentes.

$\frac{\mathrm{Fare}}{4}$
List of Symbols
5
Introduction
Analysis and Desicn 8
Result $2 ?$

1) jacuss: an of Mnsultsw 23
Conclusions sud Reommendations $2!$
Appendis 25
 2́
II. Sajnt venants: Prineiple $2 ?$
III. Curved Earis 32
IV S Smple Problemm 39
Bibliocrapty $4 ?$

Z

The purpose of this thasis mas to analyticsily desig a portable aevice that wound rossmas the fomce ou a holler cylinder ectine ss a bean.

The yorticu? ar aprincation thst wos luod as a "vehicien fon det?
 as jt sits on the cround.

A canco \&iforeft very ofton wiily b utilizo? on a futa on which there sue sororal stons. At orch ston the plare losts, ard unionos cango, shifte cax eo, and nossibly rem fuels or shifternel. All these operations cause the Weight and carles of gravity to vary from trein values When the plens is in the light condition. The value of Weight and the location of the center of gravity are of vitul importance to the pluot of the plans since they help to detemine the texemoff run required, the liftuoff speod remumad, and tho inofinght contmolyobibity erd stghinity.

 combine the sigmas form the axlos in such a way thet Airavant reiそht and conter of gravity wonta bo preasured dinectly. Tho prasont retome of detemmining roinht and
 the chenge basfa on tha eotimotod rolisht of carao and its catin tal Jistanco fixem the losstion of the conter of gravite of the empty airexnet. The mobuod is very

Fho dosire fon the device tio bo nortoble ras motivobed by two idrae. The firest war that a cownang cuerating
 sine thay could bs romoved from sircraft not enzased in the matiosiap carco haulime rac second reason ras so thet shy urer of the device mould not nequre erecifjeally trainod powsonel to install ard romove the devioes. (Porteble has been used in the sense that tho device is casily installed.)

of the forees and dim :... in oled in emayzine tho hollow cylinder and casionine a devico to reasure ils loading. Howovors thers we rany other uses bo which such a device could be p?an. fith only a counle of pipes and a systom of the pontrole devices, wighines stetions conld bo guickiy sot un by watwoined persomat. Such voighing stations would allo: operators of con ventional ships, containex ships, and roli-on, relioofe carco ships to ascertain cargo loads regandess of tho sophistiontion on ceveloprat of the yort.

Examination of hollon colinien sumoatins concontrated

 wore hollon culindera aoting an a sinnle dua with a con... controted Iced at momspan, a fixed end vesm int th conontrated lond at mid. spos, and os e cantilevamod cuat With a coroentratra losd at the frou end. In some cases the coneontr bed load represonted the whent of the afr. crafit es it was transmtted down the otrut, in some ceses the concentraded load ropreaented the \&uwh roantion tran. mitted throngs tho wheels. In ent orent, a modor in. volving a conomtrated lond and some score of apport couls be developed for and system of cargo alroraft landing gear amangements, or, for any portablo voiching station that might be nropossd.

Since the objective was to design a poxtable device,it was decided to meanure some deformetion that would occur in the hollow cylindor. To this end the simple beam was onaigea in on attempt to discorex a resption between the conoentrated load and a deformtion that could bo dotoots. Firure I。 stomsthe bosm and its:

(a)

(b)

(c)

FIGURE I
(a) Simple -an
(b) She e: Diagram
(s) Moment Dincresm。

A section, A.r.3, of tho beam roe isolated. The momartion the f end of tho section were determined to be

$$
\begin{equation*}
M_{2}=\frac{E}{2} a \tag{1}
\end{equation*}
$$

and on the B end of the section it les

$$
\begin{equation*}
M_{01}=\cdots F_{2}(\sin) \tag{2}
\end{equation*}
$$

The sign convention used in equations (J) and (2) vas that moments were considered positive muon noting clock vise on the end of a section.

The moments on tho ends of section Amp can also be dotermined from the Nanderlaniniwlor Equations which cove.

$$
\begin{equation*}
M_{a}=\frac{2 E T}{q}\left(2 \Gamma_{n}+r_{n}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{D A}=2 E_{l}\left(T_{\beta}+2 \tau_{0}\right) . \tag{i;}
\end{equation*}
$$

 is the slope of the elastic curve sind i measured ciochtin from the cine con mat.
the segment of beam.
Substitutions on (1) anc (2) into (3) snd (4) yielded equetions (5) a.e (6). Solving the latien tro equations,
to eifmingta the dimession "a", lod to a relation for r', equation (7), int texns of the elastic curve of the mombow.

$$
\begin{equation*}
f=\frac{12}{l}=\frac{L}{2}\left(l_{3}+l_{3}\right) \tag{7}
\end{equation*}
$$

ecuntion (8). Note that in both egrations (?) ens ? ?
thet the magntwa of the concentrated lon has been fome to be proportional to the aIgebraie sum of the slope of the elasifo cunves at the ond of the soctions.

$$
\begin{equation*}
F=\frac{b \sum_{0}}{\sigma^{2}}\left(r_{0}+r_{c}\right) \tag{8}
\end{equation*}
$$

The constants of popportionslity aze functione of the material of the structurel member end the distance separating the ends of the arbitrant gection A-E It shoula also be noted thet ocuations (?) and (3) are subject to the same limitetions as the andorlrominiolen Fcuations; pobindpaly that thens can bs no dia.

Forearter, the proportionality constant mill be called C_{1}. and equation (9) roprosonts all relations of concentrated load and elastic curve slope.

$$
\begin{equation*}
F=C_{1}\left(\tau_{0}+\tau_{0}\right) \tag{9}
\end{equation*}
$$

With equation (0) in mind, the next stop was to devise some way of determine the slope of the member from which the lond that hes canine the sloane could bo de.. volopad.

At this point it was assumed that simple beam theory would apply to the hollow cylinder. The FenderpeWinkles equations moguived that consideration be given only to a section with constant shear which confined any section such $a s A$..B of Figure I : to an unloader portion of the cylinder. Additionally, by suitably limiting the distance, "?", between ends of the segment under consideration and calling upon St. Venant's Principle: it was possible to stay out of a region of complex local deformations. Based on the foregoing it was reasonable to assmue that a segment of hollow cylinder could be selected that deformed elastically as a simple kean; that plans sections remained plano and that the radius of the cylfios remained constant.
3. Ste Appendix II.

It was docided to investigst the nossiblifty of hovine some sont of eun nutntained nexpordicular to e surface of the cylinr ox :hich rould have itry tin dew flectad as the Jope of the equstic curve varied. This defleution vonad cavso a stroin in another nember which could ar. tum do ruasured by commereially aro110bje stroin rates. Frif consent called fon holuine the porpondicnint frme in position ith some sont of spming loading wither in the case of the device rand anchoring one end of tho second, or strained member, to the caro.

The member suwnotine the strain eace showld be vera fleaible comparid to the unrisht。 Thorefore, sevora?
 Hon iuzired of that the tip defle?tion of the om and the rlope of the olastic curve of the hollow cylindem would roi be unduly distomted by reaietsmce to defleotion of the free end of this strained nomber.

The firsi; thin cumped bar swarimed wes in tho form of a onerhalf circle as shom in F'igure IT where P is a fonce exeyted on the free end due to tha datleetion of. the tiy of the ami had nomporbicunn to the oytanom

Fis : 2
$\frac{1}{2}$ Circio Curnod Eser

$$
\begin{align*}
& M=P \alpha \tag{10}\\
& x=A \sin \theta, \quad i t=n(3-\cos \theta), d s=\pi d \theta \tag{11}\\
& \varepsilon_{0}=\int_{0} \operatorname{din} d s \tag{12}
\end{align*}
$$

Aftar subt: thitne egretions (10) and (1J) into (10) and
 and perpendiculen to the afomemontionod, sy, vero found to be:

$$
\begin{align*}
& \delta_{\gamma}=\pi \frac{\pi n^{2}}{E \alpha_{0}} \tag{7:}\\
& \delta_{2}=2 \frac{R n^{3}}{E} \tag{15}
\end{align*}
$$

Lies, sinse the cupved boe is thin, a linear londing stwese distribution was asmued across "t" wion has a maximum value at θ fra, In addition to the stresg aue to bendine, matinc a frumbody diferam of the kulf winz fron

jsted in the ton and bottur fibers waxe

$$
\begin{align*}
& \sigma_{\text {rop }}=-\frac{p}{n}+\frac{p ⿴ 囗 十 口}{R L} \tag{16}
\end{align*}
$$

Whare the necative sigu indicatad finery ir commesoion for tho loading dopicted in Fisume IT，Tanaions（i6）and（17） are casos of rimple tonsion ond，on，comorection；threfore， a simple linogr rotation of strens and sbralu vas utilizo to relato the atress in the ton and wotton ficers to the strains in those fibers．

$$
\begin{align*}
& \sigma=E E \tag{18}\\
& \epsilon_{r a p}=\frac{1}{E}\left[\frac{p}{n}+\frac{p R E}{22}\right] \tag{19}
\end{align*}
$$

Ant thon ky subtracting（20）from（19）the result wes equation（23）．

$$
\begin{equation*}
\epsilon=\epsilon_{\text {rep }} \cdots \epsilon_{\text {comor }}=\frac{\text { Fht }}{62} \tag{21}
\end{equation*}
$$

This was readily aolved for pa／Em end related to the free ent deflections of the hajf rine．Similiar anglyeis was nado of the cunviter ant thme cuarter rinaes alrotohod in Figure III and the resulto are indicator by seno won（2？） where D is a conatait int values show in a antos（a）

(a) 1, ! cannae

(b) $3 / 1 \mathrm{Circza}$

Figure III
PARTTAT CUNT BARS
$\delta_{\%}=p \frac{R^{2}}{\dot{t}} \epsilon=D \frac{P G^{3}}{E X}$

$$
D= \begin{cases}\frac{1}{2} \pi & -\frac{1}{4} \text { ante } \tag{23}\\ \frac{1}{4} \pi & -1 \text { cinches } \\ \frac{a}{3} \pi & -\frac{3}{4} \text { anGle }\end{cases}
$$

The neat stor undentsticn was to relate the tip deflso.. tron of the upright to the ceracetion of the free end of the various psrtini-nircio curved bars and in time relate the slope of the elastic curve of the hollow cylinder to the strath in the curved bat. As the slope chanced, the tip of

$$
\delta_{0,1345}=\delta_{0}=h \tau
$$

 The whic displacenent on ut was to culimates slore is
 upricht tin being doilociah an a contizever by the curved

$$
\begin{align*}
& \hat{\imath}=\hat{k}\left[\delta_{b}+\delta_{m}\right] \text {. } \tag{26}
\end{align*}
$$

 of a cantilevor. Tnis ied to sn enoression, eruation (a?),
 dispircomont. In equation (23) , snd. hereuftor, the subw script u wefers to the unpirtht, subscriptryefers to the curved bar.

$$
\begin{equation*}
\delta_{i N_{0}}=\frac{1}{3 i} \cdot \frac{h^{3}}{h_{3}^{3}} \cdot \frac{E_{r} I}{E_{0} I_{0}} \cdot \delta_{0} \tag{28}
\end{equation*}
$$

Py sunstitution of equation (2e) into (21) an exprosston for
 equation (20).

 of stanting oguntion (30).

$$
\begin{equation*}
T=C_{2} E \tag{31}
\end{equation*}
$$

 concontrated $] 0$ dins on the hollow cylincor and tho strain in the fibevs of a flexixuarmamber, itubs dosjned to seleot a papticulam tupe of curvod ban:
ejthan in the fown of a oncmbif otrona oi a trooo
 candec because of the location on th: oonn? an: on

 under a 氏どMer loodine it wes donjwable to utiliee the typo of curvej rar thot ronld worult in the rosh sonsiturity totu is to Eay，the bay trat wousa woom dree be hjtost stria．T ：ras ecoompliched by combary

（b）Circio
Ficuro IV．

$$
\text { Eecrifuteal Assumptone for tieluatine } C_{2}
$$

Imon ecuetion $(30\rangle$ and（23）and based on Figure IV， on exprossion fou tha rejetionshin tose dovozoped which

Since the um"tht chould bs etiffer then the ring. it was nonoiuhed thet the roletion $I_{y} I_{0}$ vonad be greater then ome, This pamittad the second texms in the denominator and mmmerator of the term in brackets in equation (33) to be neglected, Consequently, equation (33) simplified to the value:

$$
\begin{equation*}
\frac{\epsilon_{3}}{\epsilon_{12}}=\frac{2}{3} \tag{3!1}
\end{equation*}
$$

Based on equation (315) a curvod bsx was choenn that dom scribed cirabalit a cirole as the ebrajned membez of tion load measumine dovjes.

In orden to combine elcesmaically, in comect relation for signs, tho vamious straju Eivges wno Iocated on the cumed bers at the tho sections, A and B, fn a Wheatstone Fridge circuit. Figure V. depiots a echematic modol of the dertee and its' relative orientetion. The amous indicate the direction trat the upright tips move when the slone of tho elastic curyo is positive, Tho sign convention emmloyed for the strain remeins positive fow Iongth chence resurtane from tersion.

Soherotic Model of Device Arrangernet
Show'ng Strein Gege ghacemont

Ecean on coustionit (0), (2), and izi), the cosines
rejution ves

Tha zar tion of oquation (35) wes obtained by locetine
 shown in Fijguro VI.

Fi\&ure !I。

The bridee ama como : tr thainges shome in equation (36).

$$
\begin{equation*}
\epsilon_{w o} \sim\left[c_{n 0}-c_{0}+c_{0 r}-c_{0 j}\right] \tag{3}
\end{equation*}
$$

A chocir to dodermira mointonance of proper aigns shoned that if there $\cdots s$ tensiun in Cor ard compression in Eng: the indiceted virain at the A section wotid be noeative rijs wes cormeot sinee the tipmovemont reguired at A to produee the aforementioned state of strain would have to be to the lefte reformine to Figure V. . That tip movement could only mesult from negetive elastuc unave zlope.

RGSMTT

A poñable loed messurine device ven concertuslly

 formulutad whoes gonomal schematic ammancoment has ween devictad in Fisume V. The functional melntion of zoed to starin is$$
\begin{equation*}
F:=C_{1} C_{2} E_{\text {Nutspred }} \tag{37}
\end{equation*}
$$

where
erid

$$
\begin{equation*}
C_{2}=\frac{1}{2} \cdot \frac{R_{1}^{2}}{t_{n}} \div \frac{1}{3} \cdot \frac{h^{2}}{A_{0}} \cdot \frac{E+D_{0}}{E_{0}} \tag{79}
\end{equation*}
$$

Analyzing sample loeding situation that the co.. ceptually forminated device conld be employed in rew vesled thet the concept contains conflictine constants.]. If the devics vere to be conetructed to fit inside a hollow cylirder of wheotol dinonsions, the moment of inertia of tine curved bar nember Would have to exceed that of the upricht by a very himil value. This could be partially alleviated by selooting a material for the cunved bar that had a Youncs' Modulus that vas only a fradtion of the modulus of the unw ight. Howoron, amy variation of modulus does not hoin the situetion that the fleaibility of the curved bar should only be one homdeth that of the upright, which is the roverse of one of the principle assumptions underiving the concopt. Ey assuming the flexibilities were equal, the concept then rocuired that the hefght of the devices upright be abolit ten times the radius of tho tinin curved bar. This vould haro fictated a curved bas of thickness approrimate?y unal to five hundreaths of an inch, which sases imonocticonly tiny; or the uprieht vould have to te of such leneth that the device rould no longer fit zasidr hollo culiraber of the sine rost İlej: to la eromatmed,

The concert of contrueting a rontsble 20ad
messuring doske based ar a mation on eisstic curvo Slope and induced strain ia irpuectival. due to the constreints on the doyice cocmetry.

Suca a pontable derice mould be of leal value, and it is rocomended that further stuoy be made on the concert. f careful experimental ariblysis of the cie. fommtions nf hollow cylinder coting as a beminith vanying end conditione should tee firsi stot in surthor study.
APEFRDIX

ATPEUIXI

Mender゙ュaかinkler Zouations
 mesno of the roment area theorems．Ascume that a porticn of a heam has a $\%$ curve as shom in Figure I ， and an elastic cume os shome in Figure II．Utils＝ing the Second＂on ant Area Theorem，wirich strtes thet the deflection of motot？is equsl to the U／WI cinve
 tre inaderlemintiler Eguntions cu．we dorived as

20170：15：

Figure A．I
IV／TI Curve
Figure A－II
Elastic Curvo

$$
r_{1}=\sin ^{-1} \delta_{3} / 2 \quad \delta_{3} / h
$$

$$
-t_{2}=\sin ^{-1} \varepsilon_{2}^{\prime}=\delta_{6} / 2 \quad \text { 2ssumine } \operatorname{sma} 11 \text { slono } \quad(A-2)
$$

 Ana9yeis－$-7,673$
from 2 ?

$$
\delta_{2}=\frac{B_{1}}{E T}(2)\left(2_{1}\right)+N-12(3)=\frac{2^{2}}{6 E x}\left[2 N_{2}+N_{2}\right]
$$

from 2 me Forint area Theorem
 and (Aㄴ) abd re-arnonging

$$
\begin{align*}
& M_{1}+M_{2}=\frac{6 E J}{2} 2_{1} \tag{1-5}\\
& M_{1}+2 M_{2}=\cdots \frac{6 E I}{2} 2_{2} \tag{A-S}
\end{align*}
$$

$$
\begin{align*}
& N_{1}=M_{i}=\frac{2 r g}{2}\left(2 \tau_{i}+\tau_{2}\right) \tag{5-.7}\\
& \cdots M_{2}=M_{21}=\frac{\lambda E S}{1}\left(\eta_{1}+2 \sigma_{2}\right) \tag{a,E}
\end{align*}
$$

 sign convention; slopes are nositive when measured clockwise with reference to the chord connecting points 1. and 2, find moments are positive when clockuse on the end of the member. Thegn ncurtione ares gish valid cray
 in the portion under considenstion.

Saint Vensnt': Erincinle?.

In both modeling and dosign, St. Venants' principle has been cailed unon. Tho pejnoivie states that: "If the londine on a suall part of the boundry of an olastio syster is replacod by a different losdine, which is staticedly equivalent to the oricingl lowding, then the stress distribution in the system will be sensfby changed wiy in the neighsorhood of the change: the stresses at a distamos from tho distrobsnce echo? io the sine of the diswumence itsolf mill be changed by a fer pexcont cnly" 2. St, Venants' pxincirle is not a ratho ematical theorem or a Iaw of nature, but is based on common sensa ard a laree collection of mathematical and experjmentaj results that bear out the principlo.

An example of mathematicol support of St. Venants' principle can be found in a study made of the stress cistribution irn a simply sunported beam with a corocentratod

1. First stated in St. Tements' manoir on tonefoi publisher in "irem. Savants etuonesp" V01, 21, 28.55.

low which was vecronad by m, Kaman and F. Seamald, I.

Kaman amsivad at a strose function thich gives the stress distribution in s besm when the kondingmonent diagnam conajsts of a very namrow rectanols, as shom in Ripure AmII.

$$
-\frac{1}{1} \div 1=-
$$

Figuro A-ITI
Bending roment Digaman

$$
\text { A stross function }(\phi) \text { is a function of } x, y \text { that }
$$

is introduced to solve the equations of equilibrium and compstibility and to satisfy the boundary conditions.

The stress function thet Karman develoned from con. sideration of pieure A-III vas:

Secmald utilized Kamanci stresh function to solve for the stress fumction of a beam subierted to a concentretec los. Is dia this nur assuming that the bend... ing moment difagren resulting from any losing could be brotan up into small elementa that wonle anoroach the rectanglo used by Karman in तovoloning couation (Am10). Seandid then interrated avor the leneth of the ream to obtain a strese function appronviate to the simnle beam With a conoontrated loed. He then divided the stress into two pents; the first part was calculated by application oi the elemantary beam fommula, and the
 β is a numoniosl fector that depends on posibion. Figure \&-xy shows the rosults he obtomod.

Simple BearmConcentraita load

$$
f \text { Ded:momad zr Soc:nez? }
$$

The
stress is the ofor of locy stresses arising
near the point of Iour anhion which is superposed on the stress calcutqted using olomentry hean formula. It is evidont thet in the mast eicverae pocition, in terms of epplicebility of simple thisory for detemmining the stress distribution, the loosl effect of the losd is noglicible st distonce grester then about J. 25 times the depth of the beam.

CURVED BARS

The stmoss eistribution and deflections of curved bara, cannot, in genorgl, be analyed using the thoovies that are arpicable to inlially straizht elastic membera. There are two appronches that can be taren; the first is to regard the har as "thin", and the socond is to re. cavd it as "thich:"

A bar in which the thickness, u, is 10 foment on less of the radius of currature, R, is considered thin. In such a bar consider a small element, ds, that is the same order of macenitude as the thiclnese. The ond sections of ds are not parsile? to each other and since they are perpendicuiar to the curved center line they form an angle. However, this angle is of the same order of magnitude as t / R snd can be neglected with the consequence that the ends are consiaered parailel. The inner and outer fibere of the element ds are also. of different lenchus, but once acein this diferonoo Is neglected since the included angle betraean the end sections and the srall t / R relation resint in a $\quad 31$ percentego differanof in finer peagtho is that the segront do is rasanded ac und ? ?
stråght, and strajche bean theow it arnlied. To be specticic, the neutrol fibcy nosses tratough the contor O2. Eravity, the bending strese distribution is linear, the stress is eiven bu ecuation (1) wheme is the djatance rrom tho neutral axis to the point under con. sideration and the deformation is determined by
 oocure in the infle bebmen end sections ds apent

Wher the segment de js stressed.

$$
\begin{align*}
& \sigma=\frac{M n}{X} \tag{A-11}\\
& M=E I \frac{d \gamma}{d \theta} \tag{A-22}
\end{align*}
$$

As an examue, considen a cancileyered ban of
 concentratad end losd P at the free ond as shown in Figune 4...7.

Figur= $\quad-?^{\prime}$
 of getion of p is alome one the coris, the monent at any arbitrary point can bo found by simfor isolating the free end from the arbitrarg ooint outrond and malti. plying p times tho ojstance the line of force action is from the noint. In the example shom in tiruce A... Fi=Px and the stress is immediately determine using ecuation (2.12).

In detruminins the displacement of the froe end som intuitive zeasoning is nocossary. In figure A.y the sermont de is allowed to deform accordins to tha moments erertad on it; hovever, the remainder of tro bam is assurned to monain undeformed. This meun thet, the section of har form A to B is uncfected and that the section from A to C rotetes as a rieed body throuch s small ancle which sauses ancular cieflection cos, dis.. plecement dig, alons the line of loat action and dism placement ds, in a cirection perpendicular to the line of load action. In order to determine the total deflection at the free and one thon mroly tsites the sum of all tho small deflections cauged by ollovine sraly segrents to Mex by thamselves from a to C^{\prime}.

From caution (2);

$$
d s=\frac{M}{B=2} d s
$$

and from the geometry and acrumi a small angles;

$$
\begin{align*}
& d \delta_{y}=-x d y \tag{1-11}\\
& d_{1}^{\prime} \delta x=y d y \tag{A-25}
\end{align*}
$$

Which after substituting (3) into (1) ard (5), and integrating the equations for the movement of the fred and reantis:

$$
\begin{align*}
& \phi=\int_{S} \frac{B_{E}}{E I} d \tag{son}\\
& \delta_{y}=\int_{E} \frac{M R}{E L} d s \tag{A-1?}\\
& \delta_{y}=-\int \frac{M L}{E L} d S \tag{5-18}
\end{align*}
$$

In cases when the curnotrone of the bern is sharp, t / R is greater than 10 nercont, several of the factors that were neglected in the examination of thin bare can no loner be neglected. Tho pritcopie factor that con no longer be ignored is the difference in length of the inner and outer fibers. The procentace dieforenoe has become significant, and this in tum makes assuring a
 As the bat is deformed, the tote? deformation of the

 strains ave not inamercionsz to the as u

 $(\sigma=E \in)$ of the vaterio?, tre tarnentiaj strass is not Inroungy diztrimutad.

Serami anmoobso have bora made in suajuzind tre strass hestribution in thicto ourved ugro, which incurves the exact sotutions, I. Iosct wort solutions? and tynesm solutione. 3. The hymervolio, or arnier-mach, solutions
 tion based on the simmle beam formula ky moane ci a conctent.! The rolution applies only to the ewtow ans inner sunfecs fibers and hes been puesertea in teryen foy risvious cunse seobions end tia ratios of barathat ere subiacter to bendimg only.

1. Timosberiar, S. End Goodier, íst .anoomir of

19stiostry n.0.0.65 and p.73-78
 F.2?3.2.26

5ohtock, $0, \therefore, 50$

The equation fow us? tith the trojes ie:

$$
\begin{equation*}
O_{\text {Circumpemential }}=K\left(\frac{M c}{j}\right) \tag{A-TC}
\end{equation*}
$$

winere

$$
\begin{equation*}
K_{1}=\frac{M}{A N}\left(1+\frac{1}{2} \cdot \frac{c}{\sqrt{2}+z}\right) / \frac{M C}{X} \tag{1-20}
\end{equation*}
$$

end H is the gon?ied rount end in nositime minen de..
croasinc the zodius of curvaturo, C is tre dietence fron
the centioict orja to the firen nsamesthe center of
currsture, A is the cross seetionn Erea. art it is the radius of cunvature masured to the centroid exis, end灻 is defined by ecustioul (A-EI).

$$
\begin{equation*}
z=-\frac{3}{A} \int_{A} \frac{u}{1+i} d A \tag{4-21}
\end{equation*}
$$

In equation (A-29) y is reasured form the centuoidal
axis and is positive rken ressursd avag from the contam of curvature of the dar.

If in addition to a bending moment M, there is an axiaj jood thet passen through the centroid or the oross sectional error; the coraetion facton is fenerazuy Essurned to emvay to the tramential strese due to axtal 1oad. The eruation for tha siress an an otitom fhear unden sucta a loaninç tron tenomes:

$$
U_{c_{1 B=1,1}}=K\left[\frac{F}{A}+\frac{M i c}{T}\right]
$$

Wheme P is taken es the aytal ?osd, Photoolastic anatyés incicates that the noilmu =tress detemaed woins
equation $(1-22)$ ia cuite close.l.

 4rrus?
\qquad

In onder bo find out Hat scontings and size factors Were involvod an azle siat mat beding vas ascumod then aneľ゙zed to dotarmino vani sun e Incrins rsant in torma of straine and sloges, It rarertiojugthe that the mesenuing devico vonje be put indide tho hollar ovinder; but, fo: Eurnoses of the samele problem curves Ka? dimencions, umajght dimensions, and eto., wero chosen on the rasis on epprosprate size lomits rethon thon ravet dimeneions that would actualy fit insile tho ansumed hollo: cylinनo

Calculat:ons:

$$
\begin{align*}
& M_{3}=(100,000)\binom{8}{2}=400,000 \mathrm{in}-16 \\
& M 00=-(100,000)(2)=-500,000 \mathrm{in}-1 \% \\
& \left(A_{0}-21\right) \\
& 22_{8 \rightarrow 2}+\tau_{8}=\frac{i}{2 E I}\left(M_{A}\right)=\frac{4000001}{2 E 1} \tag{A-25}\\
& \tau_{0}+2 \alpha_{3}=\frac{2}{2}\left(\beta i_{i n}\right)=-\frac{506 a 097}{2 E D}<-\frac{1}{2}
\end{align*}
$$

$$
\begin{align*}
& \tilde{\varepsilon}_{n}=3.57 \times 10^{-4} \text { rations } \\
& \tau_{c}=\frac{400202}{2 E 2}-\frac{1.302091}{202}=\cdots 3.845 \times 16104(0-27) \\
& \text { Asouring } F_{i}=h, F_{i} / 2=10, E_{y}=E_{r} \text { : }
\end{align*}
$$

$$
\begin{align*}
& \tau_{i}=c_{2} \epsilon_{B} \tag{A-Z0}
\end{align*}
$$

Assume minimun discembible valun of ϵ_{n} is 1 , fsamon

$$
\text { required } \frac{I_{r}}{I_{v}}=\frac{9}{3.33}\left[\frac{2}{20}-15.7 i\right]=10.25 \text { (An } 30 \text {) }
$$

$$
\begin{align*}
& c_{3}=5 \pi\left(\frac{h}{h}\right)+\frac{10}{3}\left(\frac{h}{h}\right)^{2} \tag{A-32}\\
& c_{2}=\frac{2}{\epsilon_{n}}=357 \tag{A-3a}\\
& \left(\frac{h}{n}\right)^{3}-107(h) \div 87=0 \tag{A-33}
\end{align*}
$$

required $\frac{h}{R}<10$

2. S.F. Crendinll and N.C. Dahl; An Introduction to the Mochonics af jolids; MCGark-Hill book Co.; Ne\% York; 1959
3. I.P. Den Karbog; Strensth of Neteriles; Dower Publicelions; New Vork; 295\}.

Li S. Thmoshenk and J.N. Goodior; Theory of Frasticitw; MCGma-Hill Eook Co; Ne: York; 1,5I
\because U.P. Den Hartog; Advarced Strength of Istertale;

$$
\text { Mongr-bill Pook Co.; New Yort; } 1952
$$

?: T. Se Sely End J.n. Srith; Advanoed Nechonics of IIt Ha1s; Chaman and Hail Limited; Iomion: lase
8. S. Mmoshertro; Theony of plabe end Sbolls; MGmam Hill Eool: Co.: Nen Yors; 194:0
9. M. Hetenyi; Fendbook of Emerimental Strass Aralysis; John Wiley and Sons, Inc.; New York; 1950
10. O. Fstrosh; Fendhook of Engineerins Fundemontale; Tohn and life" and Sons, Ine.; len "or': ; iósi

 19シ4
12. S. Timoshentio; Theo of mastic Buabilitv;

$$
\text { MCraviliju Eook Co.; Hen York; } 1936
$$

13. A.C. Ruço and F.O. Schmidt; Mechonical Structural Analysis by the Voment Indicator;" Procendincs of Arericen Society of Civil Encinecrs; October, 1938
14. G.K. Ozolins; "An Irvestigation of the Stress

Distribution and Deformation of Cy?indricri Shell
due to Concontrated Loads"
N.T.T. Kechanical Fnginecring Department Thesis; 1961
15. E.B. Debbas; "Reletions of Curvature Changes to Deflostions in Curved Elements;"
M.I. I, Civil Engineering Doparment Thesis: I.9́i

$$
1 t
$$

